In waarskynlikheid en statistiek is geheueloosheid 'n eienskap van sekere waarskynlikheidsverdelings. Dit verwys gewoonlik na die gevalle waar die verspreiding van 'n "wagtyd" tot 'n sekere gebeurtenis nie afhang van hoeveel tyd reeds verloop het nie.
Wat beteken geheuelose eiendom?
Die geheuelose eienskap (ook genoem die vergeet-eienskap) beteken dat 'n gegewe waarskynlikheidsverdeling onafhanklik is van sy geskiedenis … As 'n waarskynlikheidsverspreiding die geheuelose eienskap het, is die waarskynlikheid dat iets sal gebeur in die toekoms het geen verband met of dit in die verlede gebeur het of nie.
Wat is geheuelose eienskap van eksponensiële verspreiding?
Die eksponensiële verspreiding is geheueloos want die verlede het geen invloed op sy toekomstige gedrag nie. Elke oomblik is soos die begin van 'n nuwe ewekansige periode, wat dieselfde verspreiding het, ongeag hoeveel tyd reeds verloop het.
Hoe bewys jy Geheueloosheid?
'n Meetkundige ewekansige veranderlike X het die geheuelose eienskap as vir alle nienegatiewe heelgetalle s en t, die volgende verband geld. Die waarskynlikheidsmassafunksie vir 'n meetkundige ewekansige veranderlike X is f(x)=p(1−p)x Die waarskynlikheid dat X groter as of gelyk aan x is, is P(X≥x)=(1−p)x.
Wat is die geheuelose eiendom van Markov-ketting?
ewekansige prosesse is versamelings van ewekansige veranderlikes, dikwels geïndekseer oor tyd (indekse verteenwoordig dikwels diskrete of kontinue tyd) vir 'n ewekansige proses, die Markov-eienskap sê dat, gegewe die hede, die waarskynlikheid van die toekoms is onafhanklik van die verlede (hierdie eiendom word ook "geheuelose eiendom" genoem)